
Lecture 4

Magnetostatics, Boundary
Conditions, and Jump
Conditions

4.1 Magnetostatics

The magnetostatic equations where ∂/∂t = 0 are [29,31,40]

∇×H = J (4.1.1)

∇ ·B = 0 (4.1.2)

One way to satisfy the second equation is to let

B = ∇×A (4.1.3)

because

∇ · (∇×A) = 0 (4.1.4)

The above is zero for the same reason that a · (a × b) = 0. In this manner, Gauss’s law is
automatically satisfied.

From (4.1.1), we have

∇×
(

B

µ

)
= J (4.1.5)

Then using (4.1.3)

∇×
(

1

µ
∇×A

)
= J (4.1.6)
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In a homogeneous medium, µ is a constant and hence

∇× (∇×A) = µJ (4.1.7)

We use the vector identity that (see previous lecture)

∇× (∇×A) = ∇(∇ ·A)− (∇ · ∇)A

= ∇(∇ ·A)−∇2A (4.1.8)

As a result, we arrive at [41]

∇(∇ ·A)−∇2A = µJ (4.1.9)

By imposing the Coulomb’s gauge that ∇·A = 0, which will be elaborated in the next section,
we arrive at

∇2A = −µJ (4.1.10)

The above is also known as the vector Poisson’s equation. In cartesian coordinates, the above
can be viewed as three scalar Poisson’s equations. Each of the Poisson’s equation can be
solved using the Green’s function method previously described. Consequently, in free space

A(r) =
µ

4π

˚
V

J(r′)

R
dV ′ (4.1.11)

where

R = |r− r′| (4.1.12)

and dV ′ = dx′dy′dz′. It is also variously written as dr′ or d3r′.

4.1.1 More on Coulomb’s Gauge

Gauge is a very important concept in physics [42], and we will further elaborate it here. First,
notice that A in (4.1.3) is not unique because one can always define

A′ = A−∇Ψ (4.1.13)

Then

∇×A′ = ∇× (A−∇Ψ) = ∇×A = B (4.1.14)

where we have made use of that ∇×∇Ψ = 0. Hence, the ∇× of both A and A′ produce the
same B.

To find A uniquely, we have to define or set the divergence of A or provide a gauge
condition. One way is to set the divergence of A to be zero, namely

∇ ·A = 0 (4.1.15)
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Then

∇ ·A′ = ∇ ·A−∇2Ψ 6= ∇ ·A (4.1.16)

The last non-equal sign follows if ∇2Ψ 6= 0. However, if we further stipulate that ∇ ·A′ =
∇·A = 0, then −∇2Ψ = 0. This does not necessary imply that Ψ = 0, but if we impose that
condition that Ψ → 0 when r → ∞, then Ψ = 0 everywhere.1 By so doing, A and A′ are
equal to each other, and we obtain (4.1.10) and (4.1.11).

4.2 Boundary Conditions–1D Poisson’s Equation

Boundary conditions are embedded in the partial differential equations that the potential or
the field satisfy. Two important concepts to keep in mind are:

• Differentiation of a function with discontinuous slope will give rise to step discontinuity.

• Differentiation of a function with step discontinuity will give rise to a Dirac delta func-
tion. This is also called the jump condition, a term often used by the mathematics
community [43].

Take for example a one dimensional Poisson’s equation that

d

dx
ε(x)

d

dx
Φ(x) = −%(x) (4.2.1)

where ε(x) represents material property that has the form given in Figure 4.1. One can
actually say a lot about Φ(x) given %(x) on the right-hand side. If %(x) has a delta function
singularity, it implies that ε(x) d

dxΦ(x) has a step discontinuity. If %(x) is finite everywhere,

then ε(x) d
dxΦ(x) must be continuous everywhere.

Furthermore, if ε(x) d
dxΦ(x) is finite everywhere, it implies that Φ(x) must be continuous

everywhere.

1It is a property of the Laplace boundary value problem that if Ψ = 0 on a closed surface S, then Ψ = 0
everywhere inside S. Earnshaw’s theorem is useful for proving this assertion.
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Figure 4.1: A figure showing a charge sheet at the interface between two dielectric media.
Because it is a surface charge sheet, the volume charge density %(x) is infinite at the sheet
location x0.

To see this in greater detail, we illustrate it with the following example. In the above,
%(x) represents a charge distribution given by %(x) = %sδ(x − x0). In this case, the charge
distribution is everywhere zero except at the location of the surface charge sheet, where the
charge density is infinite: it is represented mathematically by a delta function2 in space.

To find the boundary condition of the potential Φ(x) at x0 , we integrate (4.2.1) over an
infinitesimal width around x0, the location of the charge sheet, namely

ˆ x0+∆

x0−∆

dx
d

dx
ε(x)

d

dx
Φ(x) = −

ˆ x0+∆

x0−∆

dx%(x) (4.2.2)

or on the left-hand side, we get

ε(x)
d

dx
Φ(x)

∣∣∣∣x0+∆

x0−∆

∼= −%s (4.2.3)

whereas on the right-hand side, we pick up the contribution from the delta function. Evalu-
ating the left-hand side at their limits, one arrives at

lim
∆→0

ε(x+
0 )

d

dx
Φ(x+

0 )− ε(x−0 )
d

dx
Φ(x−0 ) ∼= −%s, (4.2.4)

In other words, the jump discontinuity is in ε(x) d
dxΦ(x) and the amplitude of the jump

discontinuity is proportional to the amplitude of the delta function.
Since E = ∇Φ, or

Ex(x) = − d

dx
Φ(x), (4.2.5)

2This function has been attributed to Dirac who used in pervasively, but Cauchy was aware of such a
function.
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The above implies that

ε(x+
0 )Ex(x+

0 )− ε(x−0 )Ex(x−0 ) = %s (4.2.6)

or

Dx(x+
0 )−Dx(x−0 ) = %s (4.2.7)

where

Dx(x) = ε(x)Ex(x) (4.2.8)

The lesson learned from above is that boundary condition is obtained by integrating the
pertinent differential equation over an infinitesimal small segment. In this mathematical
way of looking at the boundary condition, one can also eyeball the differential equation and
ascertain the terms that will have the jump discontinuity that will yield the delta function
on the right-hand side.

4.3 Boundary Conditions–Maxwell’s Equations

As seen previously, boundary conditions for a field is embedded in the differential equation
that the field satisfies. Hence, boundary conditions can be derived from the differential
operator forms of Maxwell’s equations. In most textbooks, boundary conditions are obtained
by integrating Maxwell’s equations over a small pill box [29,31,41]. To derive these boundary
conditions, we will take an unconventional view: namely to see what sources can induce jump
conditions on the pertinent fields. Boundary conditions are needed at media interfaces, as
well as across current or charge sheets.

4.3.1 Faraday’s Law

Figure 4.2: This figure is for the derivation of Faraday’s law. A local coordinate system can be
used to see the boundary condition more lucidly. Here, the normal n̂ = ŷ and the tangential
component t̂ = x̂.
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For this, we start with Faraday’s law, which implies that

∇×E = −∂B

∂t
(4.3.1)

One quick answer we could have is that if the right-hand side of the above equation is every-
where finite, then there could not be any jump discontinuity on the field E on the left hand
side. To see this quickly, one can project the tangential field component and normal field
component to a local coordinate system. In other words, one can think of t̂ and n̂ as the local
x̂ and ŷ coordinates. Then writing the curl operator in this local coordinates, one gets

∇×E =

(
x̂
∂

∂x
+ ŷ

∂

∂y

)
× (x̂Ex + ŷEy) (4.3.2)

= ẑ
∂

∂x
Ey − ẑ

∂

∂y
Ex (4.3.3)

In simplifying the above, we have used the distributive property of cross product, and evalu-
ating the cross product in cartesian coordinates. The cross product produces four terms, but
only two of the four terms are non-zero as shown above.

Since the right-hand side of (4.3.1) is finite, the above implies that ∂
∂xEy and ∂

∂yEx have
to be finite. In order words, Ex is continuous in the y direction and Ey is continuous in the
x direction. Since in the local coordinate system, Ex = Et, then Et is continuous across the
boundary. The above implies that

E1t = E2t (4.3.4)

or

n̂×E1 = n̂×E2 (4.3.5)

where n̂ is the unit normal at the interface, and n̂ × E always bring out the tangential
component of a vector E (convince yourself).

4.3.2 Gauss’s Law

From Gauss’s law, we have

∇ ·D = % (4.3.6)

where % is the volume charge density.
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Figure 4.3: A figure showing the derivation of boundary condition for Gauss’s law. Again, a
local coordinate system can be introduced for convenience.

Expressing the above in local coordinates, then

∇ ·D =
∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
Dz = % (4.3.7)

If there is a surface layer charge at the interface, then the volume charge density must be
infinitely large, and can be expressed in terms of a delta function, or % = %sδ(z) in local
coordinates. By looking at the above expression, the only term that can produce a δ(z) is
from ∂

∂zDz. In other words, Dz has a jump discontinuity at z = 0; the other terms do not.
Then

∂

∂z
Dz = %sδ(z) (4.3.8)

Integrating the above from 0−∆ to 0 + ∆, we get

Dz(z)

∣∣∣∣0+∆

0−∆

= %s (4.3.9)

or

Dz(0
+)−Dz(0

−) = %s (4.3.10)

where 0+ = lim∆→0 0 + ∆, 0− = lim∆→0 0 − ∆. Since Dz(0
+) = D2n, Dz(0

−) = D1n, the
above becomes

D2n −D1n = %s (4.3.11)

or that

n̂ · (D2 −D1) = %s (4.3.12)
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In other words, a charge sheet %s can give rise to a jump discontinuity in the normal component
of the electric flux D. Figure 4.4 shows an intuitive sketch as to why a charge sheet gives rise
to a discontinuous normal component of the electric flux D.

Figure 4.4: A figure intuitively showing why a sheet of charge gives rise to a jump discontinuiy
in the normal component of the electric flux D.

4.3.3 Ampere’s Law

Ampere’s law, or the generalized one, stipulates that

∇×H = J +
∂D

∂t
(4.3.13)

Again if the right-hand side is everywhere finite, then H is a continuous field everywhere.
However, if the right-hand side has a delta function singularity, then this is not so. For
instance, we can project the above equation onto a local coordinates just as we did for
Faraday’s law.
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Figure 4.5: A figure showing the derivation of boundary condition for Ampere’s law. A local
coordinate system is used for simplicity.

To be general, we also include the presence of a current sheet at the interface. A current
sheet, or a surface current density becomes a delta function singularity when expressed as a
volume current density; Thus, rewriting (4.3.13) in a local coordinate system, assuming that
J = x̂Jsxδ(z), then

∇×H = x̂

(
∂

∂y
Hz −

∂

∂z
Hy

)
= x̂Jsxδ(z) (4.3.14)

The displacement current term on the right-hand side is ignored since it is regular or finite,
and will not induce a jump discontinuity on the field; hence, we have the form of the right-
hand side of the above equation. From the above, the only term that can produce a δ(z)
singularity on the left-hand side is the − ∂

∂zHy term. Therefore, we conclude that

− ∂

∂z
Hy = Jsxδ(z) (4.3.15)

In other words, Hy has to have a jump discontinuity at the interface where the current
sheet resides. Or that

Hy(z = 0+)−Hy(z = 0−) = −Jsx (4.3.16)

The above implies that

H2y −H1y = −Jsx (4.3.17)

But Hy is just the tangential component of the H field. Now if we repeat the same exercise
with J = ŷJsyδ(z), at the interface, we have

H2x −H1x = Jsy (4.3.18)

Now, (4.3.17) and (4.3.18) can be rewritten using a cross product as

ẑ × (ŷH2y − ŷH1y) = x̂Jsx (4.3.19)

ẑ × (x̂H2x − x̂H1x) = ŷJsy (4.3.20)
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The above two equations can be combined as one to give

ẑ × (H2 −H1) = Js (4.3.21)

Taking ẑ = n̂ in general, we have

n̂× (H2 −H1) = Js (4.3.22)

In other words, a current sheet Js can give rise to a jump discontinuity in the tangential
components of the magnetic field, n̂×H. This is illustrated intuitively in Figure 4.6

Figure 4.6: A figure intuitively showing that with the understanding of how a single line
current source generates a magnetic field (right), a cluster of them forming a current sheet
will generate a jump discontinuity in the tangential component of the magnetic field H (left).

4.3.4 Gauss’s Law for Magnetic Flux

Similarly, from Gauss’s law for magnetic flux, or that

∇ ·B = 0 (4.3.23)

one deduces that

n̂ · (B2 −B1) = 0 (4.3.24)

or that the normal magnetic fluxes are continuous at an interface. In other words, since mag-
netic charges do not exist, the normal component of the magnetic flux has to be continuous.
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1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier,
1825.

[13] B. Jones and M. Faraday, The life and letters of Faraday. Cambridge University Press,
2010, vol. 2.

[14] G. Kirchhoff, “Ueber die auflösung der gleichungen, auf welche man bei der untersuchung
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